11,[tex]<=> \frac{x^3+14}{x+2}-3=2\sqrt{\frac{x^3-3x+4}{x+1}}\\\\ <=> \frac{x^3-3x+8}{x+2}=2\sqrt{\frac{x^3-3x+4}{x+1}}\\\\ +, \sqrt{x^3-3x+4}=a; \sqrt{x+1}=b\\\\ pt <=> \frac{a^2+4}{b^2+1}=\frac{2a}{b}\\\\ <=> a^2b+4b=2ab^2+2a\\\\ <=> a^2b-2ab^2+4b-2a=0\\\\ <=> a.(ab-2)-2b.(ab-2)=0\\\\ <=> (a-2b).(ab-2)=0\\\\ +, a=2b <=> x^3-3x+4=x+1\\\\ <=> x^3-4x+3=0\\\\ <=> x^3-x^2+x^2-x-3x+3=0\\\\ <=> (x-1).(x^2+x-3)=0\\\\ <=>....\\\\ +, ab=2\\\\ <=> a^2b^2=4\\\\ <=> (x^3-3x+4).(x+1)=4\\\\ <=> x^4-3x^2+4x+x^3-3x+4=4\\\\ <=> x^4+x^3-3x^2+x=0\\\\ <=> x.(x^3+x^2-3x+1)=0\\\\ <=> x.(x^3-x^2+2x^2-2x-x+1)=0\\\\ <=>x.(x-1).(x^2+2x-1)=0\\\\ <=>...[/tex]
12, [tex]<=> \frac{a}{b}=\frac{2a^2.b+1}{2+b^3}\\\\ <=> 2a+ab^3=2a^2b^2+b\\\\ <=> 2a-b +ab^3-2a^2b^2=0\\\\ <=> (2a-b)-ab^2.(2a-b)=0\\\\ <=> (2a-b).(1-ab^2)=0\\\\ +, 2a-b=0 <=>....\\\\ +, 1-ab^2=0; 3b^2-2a^2=6x-3-6x+4=1\\\\ => b^2=\frac{1}{3}.(1+2a^2)\\\\ => a.\frac{1}{3}.(1+2a^2)=1\\\\ <=> 2a^3+a=3\\\\ <=> 2a^3+a-3=0\\\\ <=> 2a^3-2a^2+2a^2-2a+3a-3=0\\\\ <=> (a-1).(2a^2+2a+3)=0\\\\ <=> a=1 <=>...[/tex]
13, [tex]<=> 2ab+12=3a+8b\\\\ <=> 3a-12+8b-2ab=0\\\\ <=> 3.(a-4)-2b.(a-4)=0\\\\ <=> (a-4).(3-2b)=0\\\\ <=>...[/tex]
14,đặt: [tex]\sqrt{x}=a; \sqrt{x+1}=b;\sqrt{x+6}=c[/tex]
pt <=> [tex]<=> a+\frac{bc}{a}-b=c\\\\ <=> a^2+bc-ab-ac=0\\\\ <=> a.(a-b)-c.(a-b)=0\\\\ <=> (a-b).(a-c)=0\\\\ <=>...[/tex]
15,đặt: [tex]\sqrt{x}=a; \sqrt{x+2}=b; \sqrt{x+3}=c[/tex]
pt <=> [tex]\frac{1}{a}-ab=\frac{1}{c}-bc\\\\ <=> \frac{1}{a}-\frac{1}{c}-ab+bc=0\\\\ <=> \frac{c-a}{ac}+b.(c-a)=0\\\\ <=> (c-a).(\frac{1}{ac}+b)=0\\\\ <=> a=c[/tex]