[tex]2x^{2}+2x+1=(2x+3)(\sqrt{x^{2}+x+2}-1)\\\Leftrightarrow x^2+x+2-(2x+3)(\sqrt{x^{2}+x+2})+x^2+x+2x+3-1=0\\\Leftrightarrow x^2+x+2-(2x+3)(\sqrt{x^{2}+x+2})+x^2+3x+2=0\\\sqrt{x^{2}+x+2}=t\\t^2-(2x+3)t+x^2+3x+2=0\\\Delta =(2x+3)^2-4(x^2+3x+2).1=4x^2+12x+9-4(x^2+3x+2)=1\\t_1=\frac{-b+\sqrt{\Delta }}{2a}=\frac{2x+3+1}{2}=x+2\\t_2=\frac{-b-\sqrt{\Delta} }{2a}=\frac{2x+3-1}{2}=x+1\\\rightarrow \sqrt{x^{2}+x+2}=x+2\\\sqrt{x^{2}+x+2}=x+1[/tex]
Thì tự lo liệu nốt
)