a) Ta thấy:
[tex]VT=\sqrt{x^2+6}> x;VP=x-2\sqrt{x^2-1}[tex]\Rightarrow[/tex] phương trình vô nghiệm
b) ĐKXĐ: [tex]x\geq 1[/tex] hoặc [tex]x=-1[/tex]. Bình phương hai vế ta có:
[tex]2x^2+8x+6+x^2-1+2\sqrt{2(x+1)^2(x+3)(x-1)}=4x^2+8x+4\\ \Leftrightarrow 2\sqrt{2(x+1)^2(x+3)(x-1)}=x^2-1\\ \Rightarrow 8(x+1)^2(x+3)(x-1)=(x-1)^2(x+1)^2\\ \Leftrightarrow (x-1)^2(x+1)(7x+25)=0\\ \Leftrightarrow x\in \left \{ \pm 1 \right \}[/tex] (loại [tex]x=\frac{-25}{7}(x\geq 1;x=-1)[/tex]
c)[tex]\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66[/tex]
ĐKXĐ: [tex]7\leq x\leq 9[/tex]
[tex]VT^2=x-7+9-x+2\sqrt{(x-7)(9-x)}\leq 2+(x-7)+(9-x)=4\Rightarrow VT\leq 2[/tex]
[tex]VP=x^2-16x+66=(x-8)^2+2\geq 2[/tex]
[tex]VT=VP\Rightarrow VT=VP=2\\ \Rightarrow x-8=0;x-7=9-x\Rightarrow x=8[/tex][/tex]