[tex]\frac{x^{2}-24}{2001}+\frac{x^{2}-22}{2003}=\frac{x^{2}-20}{2005}+\frac{x^{2}-18}{2007}[/tex]
$\dfrac{x^{2}-24}{2001}+\dfrac{x^{2}-22}{2003}=\dfrac{x^{2}-20}{2005}+\dfrac{x^{2}-18}{2007}
\\\Leftrightarrow \dfrac{x^{2}-24}{2001}+\dfrac{x^{2}-22}{2003}-\dfrac{x^{2}-20}{2005}-\dfrac{x^{2}-18}{2007}=0
\\\Leftrightarrow (\dfrac{x^{2}-24}{2001}-1)+(\dfrac{x^{2}-22}{2003}-1)-(\dfrac{x^{2}-20}{2005}-1)-(\dfrac{x^{2}-18}{2007}-1)=0
\\=\dfrac{x^2-2025}{2001}+\dfrac{x^2-2025}{2003}-\dfrac{x^2-2025}{2005}-\dfrac{x^2-2025}{2007}=0
\\\Leftrightarrow (x^2-2025)(\dfrac{1}{2001}+\dfrac{1}{2003}-\dfrac{1}{2005}-\dfrac{1}{2007})=0$
$\Leftrightarrow x^2-2025=0$ (vì $\dfrac{1}{2001}+\dfrac{1}{2003}-\dfrac{1}{2005}-\dfrac{1}{2007}\neq 0$)
$\Leftrightarrow x=\pm 45$
Vậy...