Lần này chắc là đúng, hổng lẽ sai nữa thì cmnr:-SS
\[\begin{array}{l}
\sqrt {\frac{{2\sqrt x  + 1}}{{x + \sqrt x }}}  = \sqrt {2\sqrt x  + 1}  - \sqrt {x + \sqrt x }  + 1\\
 \Leftrightarrow \frac{{\sqrt {2\sqrt x  + 1}  - \sqrt {x + \sqrt x } }}{{\sqrt {x + \sqrt x } }} = \sqrt {2\sqrt x  + 1}  - \sqrt {x + \sqrt x } \\
 \Leftrightarrow \left( {\sqrt {2\sqrt x  + 1}  - \sqrt {x + \sqrt x } } \right)\left( {\frac{1}{{\sqrt {x + \sqrt x } }} - 1} \right) = 0\\
 \Leftrightarrow \left( {\frac{{\sqrt x  + 1 - x}}{{\sqrt {2\sqrt x  + 1}  + \sqrt {x + \sqrt x } }}} \right)\left( {\frac{{1 - \sqrt {x + \sqrt x } }}{{\sqrt {x + \sqrt x } }}} \right) = 0\\
 \Leftrightarrow  - \left( {\frac{{\sqrt x  - (x - 1)}}{{\sqrt {2\sqrt x  + 1}  + \sqrt {x + \sqrt x } }}} \right)\left( {\frac{{\sqrt x  + (x - 1)}}{{\left( {1 + \sqrt {x + \sqrt x } } \right)\sqrt {x + \sqrt x } }}} \right) = 0\\
 \Leftrightarrow x - {(x - 1)^2} = 0\\
 \Leftrightarrow  - {x^2} + 3x - 1 = 0\\
 \Leftrightarrow x = \frac{{3 \pm \sqrt 5 }}{2}
\end{array}\]