

10Ax−1y+y.Ax−1y−1=2Axy−1=1Cxy−1
Đk : x≥y+1
2Axy−1=1Cxy−1
⟺2(x−y+1)!x!=(y−1)!(x−y+1)!x!
⟺(x−y+1)!x!(21−(y−1)!1)=0
⟺(y−1)!=2!
⟺y=3
10Ax−1y+y.Ax−1y−1=2Axy−1
⟺10Ax−13+3.Ax−12=2Ax2
⟺10(x−4)!(x−1)!+10(x−3)!3(x−1)!=2(x−2)!x!
⟺10(x−4)!(x−1)!(1+x−33)=2(x−2)(x−3)(x−4)!x!
⟺10(x−4)!(x−1)!.x−3x=2(x−2)(x−3)(x−4)!x!
⟺101=2(x−2)1
⟺x=7
Cx4+Cx5=Cx6+x!2(1) đk :x≤4
Do (6−x)!=(4−x)!(5−x)(6−x)
(1)⟺(4−x)!4!!+(5−x)!5!=(6−x)!6!+2
⟺4!(5−x)(6−x)+5!(6−x)=6!+2(6−x)!
⟺4![(5−x)(6−x)+5(6−x)−30]=2(6−x)!
⟺12(x2−16x+30)=(6−x)! (2)
(2) chứng tỏ (6-x)! chia hết cho 12
⟺(6−x)!=(4!,5!,6!)⟺x=0,1,2
Thử lại với pt (2)=>x=2(ycbt)