Giải Phương trình tổ hợp

H

hien_vuthithanh

$\dfrac{A_{x-1}^{y}+y.A_{x-1}^{y-1}}{10}=\dfrac{A_{x}^{y-1}}{2}=\dfrac{C_{x}^{y-1}}{1}$

Đk : $x\ge y+1$

$$\dfrac{A_{x}^{y-1}}{2}=\dfrac{C_{x}^{y-1}}{1}$$
$$\iff \dfrac{x!}{2(x-y+1)!}=\dfrac{x!}{(y-1)!(x-y+1)!}$$
$$\iff \dfrac{x!}{(x-y+1)!}(\dfrac{1}{2}-\dfrac{1}{(y-1)!})=0$$
$$\iff (y-1)!=2!$$
$$\iff y=3$$

$$\dfrac{A_{x-1}^{y}+y.A_{x-1}^{y-1}}{10}=\dfrac{A_{x}^{y-1}}{2}$$
$$\iff \dfrac{A_{x-1}^{3}+3.A_{x-1}^{2}}{10}=\dfrac{A_{x}^{2}}{2}$$
$$\iff \dfrac{(x-1)!}{10(x-4)!}+\dfrac{3(x-1)!}{10(x-3)!}=\dfrac{x!}{2(x-2)!}$$
$$\iff \dfrac{(x-1)!}{10(x-4)!}(1+\dfrac{3}{x-3})=\dfrac{x!}{2(x-2)(x-3)(x-4)!}$$
$$\iff \dfrac{(x-1)!}{10(x-4)!}.\dfrac{x}{x-3}=\dfrac{x!}{2(x-2)(x-3)(x-4)!}$$
$$\iff \dfrac{1}{10}=\dfrac{1}{2(x-2)}$$
$$\iff x=7$$

 
D

dien0709

$ C_x^4+C_x^5=C_x^6+\dfrac{2}{x!} (1)$ đk :$x\le 4$

Do $(6-x)!=(4-x)!(5-x)(6-x)$

$(1)\iff \dfrac{4!}{(4-x)!}!+\dfrac{5!}{(5-x)!}=\dfrac{6!}{(6-x)!}+2$

$\iff 4!(5-x)(6-x)+5!(6-x)=6!+2(6-x)!$

$\iff 4![(5-x)(6-x)+5(6-x)-30]=2(6-x)!$

$\iff 12(x^2-16x+30)=(6-x)!$ (2)

(2) chứng tỏ (6-x)! chia hết cho 12

$\iff (6-x)! =(4! , 5! , 6!) \iff x=0,1,2$

Thử lại với pt (2)=>$x=2 (ycbt)$
 
Top Bottom