Giải phương trình: [tex]10\sqrt{x^3+1}=3(x^2+2)[/tex]
[tex]dk:x> -1[/tex]
[tex]\Leftrightarrow 10\sqrt{x^3+1}-30x-30=3(x^2+2)-30x-30[/tex]
[tex]\Leftrightarrow 10.\frac{x^3+1-[3(x+1)]^2}{\sqrt{x^3+1}+3x+3}=3(x^2-10x-8)[/tex]
[tex]\Leftrightarrow 10.\frac{(x+1)(x^2-10x-8)}{\sqrt{x^3+1}+3x+3}=3(x^2-10x-8)[/tex]
[tex]\Leftrightarrow \begin{bmatrix} 10.\frac{x+1}{\sqrt{x^3+1}+3x+3}=3\\ x^2-10x-8=0 \end{bmatrix}[/tex]
TH1:[tex]x^2-10x-8=0\Leftrightarrow \begin{bmatrix} x=5-\sqrt{33}\\ x=5+\sqrt{33} \end{bmatrix}[/tex](t/m)
TH2:[tex]10.\frac{x+1}{\sqrt{x^3+1}+3x+3}=3\Leftrightarrow 10x+10=3\sqrt{x^3+1}+9x+9\Leftrightarrow 3\sqrt{x^3+1}=x+1\Leftrightarrow 9x^3+9=x^2+2x+1\Leftrightarrow x=-1[/tex](loại do điều kiện)