[imath](sinx - sin2x)(sinx + sin2x) = sin²3x[/imath]
[imath]\iff sin^2x-sin^22x-sin^23x=0[/imath]
[imath]\iff sin^2x-sin^23x-sin^22x=0[/imath]
[imath]\iff (sinx-sin3x)(sinx+sin3x)-sin^22x=0[/imath]
[imath]\iff 4cos2xsin(-x)sin2xcosx-sin^22x=0[/imath]
[imath]\iff 4cos2xsinxsin2xcosx+sin^22x=0[/imath]
[imath]\iff 2cos2xsin^22x+sin^22x=0[/imath]
[imath]\iff sin^22x(2cos2x+1)=0[/imath]
[imath]\iff \left[\begin{matrix} sin 2x = 0\\ cos2x= -\dfrac{1}{2}\end{matrix}\right.[/imath]
[imath]\iff \left[\begin{matrix} 2x = k\pi \\ 2x= \pm \dfrac{2\pi}{3}+2k\pi\end{matrix}\right.[/imath]
[imath]\iff \left[\begin{matrix} x = \dfrac{k\pi}{2} \\ x= \pm \dfrac{\pi}{3}+k\pi\end{matrix}\right. (k \in \Z)[/imath]
Gawr GuraMình làm thế này có đúng ko bạn?
(sinx - sin2x)(sinx + sin2x) = sin²3x
<=> sin²x - sin²2x = sin²3x
<=> sin²x - sin²3x = sin²2x
<=> (sinx - sin3x)(sinx + sin3x) = sin²2x
<=> (2.cos2x.sin(-x))(2.sin2x.cos(-x)) = sin²2x
<=> -2cos2x.sinx.2sin2x.cosx = sin²2x
<=> -2sinx.cosx.2sin2x.cos2x - sin²2x = 0
<=> -sin2x.sin4x - sin²2x = 0
<=> -sin2x(sin4x + sin2x) = 0
<=> -sin2x(2.sin3x.cosx) = 0
<=> sin2x.2sin3x.cosx = 0
<=> sin2x.sin3x.cosx = 0
<=> sin2x = 0 hoặc sin3x = 0 hoặc cosx = 0
<=> 2x = kpi hoặc 3x = kpi hoặc x = pi/2 + kpi
<=> x = kpi/2 hoặc x = kpi/3 hoặc x = pi/2 + kpi
<=> x = kpi/2 hoặc x = kpi/3 (k thuộc Z)