1.$sin^2(\dfrac{x}{2}-\dfrac{\pi}{4}).tan^2x-cos^2(\dfrac{x}{2})=0$
ĐK $cosx \not=0$
PT \Leftrightarrow $(\dfrac{sin\frac{x}{2}-cos\frac{x}{2}}{\sqrt{2}}.\dfrac{sin^2x}{cos^2x}-\dfrac{1+cosx}{2}=0$
\Leftrightarrow $\dfrac{1-sinx}{2}.\dfrac{(1-cosx)(1+cosx)}{(1-sinx)(1+sinx)}-\dfrac{1+cosx}{2}=0$
\Leftrightarrow $\dfrac{(1+cosx)(1-cosx)}{2(1+sinx)}-\dfrac{1+cosx}{2}=0$
\Leftrightarrow $\dfrac{1+cosx}{2}(\dfrac{1-cosx}{1+sinx}-1)=0$