giải phương trình sau
[tex]\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x+1}=3x[/tex]
Cách khác:
Xét x=0 không là nghiệm của pt
Xét x khác 0:
Đặt [tex]\sqrt{x^{2}+x+1}=a[/tex][tex]\geq 0[/tex]
[tex]\sqrt{x^{2}-x+1}=b\geq 0[/tex]
Ta có: [tex]\left\{\begin{matrix} a+b=3x & & \\ (a-b)(a+b)=2x & & \end{matrix}\right.\Leftrightarrow a-b=\frac{2}{3}\Rightarrow 2a=\frac{2}{3}+3x\Leftrightarrow 6a=2+9x\Rightarrow 6\sqrt{x^{2}+x+1}=2+9x\Leftrightarrow \left\{\begin{matrix} 2+9x\geq 0 & & \\ 36x^{2}+36x+36=81x^{2}+36x+4 & & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-2}{9} & & \\ 45x^{2}-32=0 & & \end{matrix}\right.\Leftrightarrow ......[/tex]