Bài 2:
(x−1)6+(x−2)6=1
⇒{(x−1)2≤1(x−2)6≤1
⇔{−1≤x−1≤1−1≤x−2≤1
⇔1≤x≤2
⇔(x−1)(2−x)≥0
⇒6(x−1)(2−x)((x−1)4+(2−x)4)+15(x−1)2(2−x)2((x−1)2+(2−x)2)+20(x−1)3(2−x)3≥0
⇔6(x−1)5(2−x)+15(x−1)2(2−x)2+20(x−1)3(2−x)3+15(x−1)2(2−x)2+6(x−1)(2−x)5≥0
⇔(x−1)6+6(x−1)5(2−x)+15(x−1)2(2−x)2+20(x−1)3(2−x)3+15(x−1)2(2−x)2+6(x−1)(2−x)5+(x−2)6≥(x−1)6+(x−2)6=1
⇔(x−1+2−x)6≥1
⇔1≥1
Dấu đẳng thức
⇔[x=1x=2
Vậy
⇔[x=1x=2
Last edited by a moderator: