Bg
[TEX]\int_{0}^{\frac{\pi}{4}} ln(1+tanx)dx[/TEX]

>-

>-

>-
Giải bài toán trên như sau:
[TEX]\begin{array}{l}\int\limits_0^{\frac{\pi }{4}} {ln(1 + tanx)dx} = \int\limits_0^{\frac{\pi }{4}} {ln(\frac{{{\rm{sinx}} + \cos x}}{{\cos x}})dx} \\ = \int\limits_0^{\frac{\pi }{4}} {\left[ {ln\sqrt 2 c{\rm{os}}(\frac{\pi }{4} - x) - \ln \cos x} \right]dx} \\ = \int\limits_0^{\frac{\pi }{4}} {\left[ {ln\sqrt 2 + \ln c{\rm{os}}(\frac{\pi }{4} - x) - \ln \cos x} \right]dx} \\ = \frac{\pi }{4}\ln \sqrt 2 - \int\limits_0^{\frac{\pi }{4}} {\ln c{\rm{os}}(\frac{\pi }{4} - x)d(\frac{\pi }{4} - x) - } \int\limits_0^{\frac{\pi }{4}} {\ln c{\rm{osx}}dx} \\ = \frac{\pi }{4}\ln \sqrt 2 - \int\limits_{\frac{\pi }{4}}^0 {\ln c{\rm{osx}}dx} - \int\limits_0^{\frac{\pi }{4}} {\ln c{\rm{osx}}dx} \\ = \frac{\pi }{4}\ln \sqrt 2 + \int\limits_0^{\frac{\pi }{4}} {\ln c{\rm{osx}}dx} - \int\limits_0^{\frac{\pi }{4}} {\ln c{\rm{osx}}dx} \\ = \frac{\pi }{4}\ln \sqrt 2 \\ \end{array}\[/TEX]
Bài trên khá hay đó!!!!!!!!!!

>-

>-

>-