ĐK:[TEX]x+y \geq 0[/TEX]
[tex]x^2+y^2+\frac{2xy}{x+y}=1\Rightarrow (x+y)^2-1-2xy+\frac{2xy}{x+y}=0\rightarrow (x+y-1)(x+y+1)-2xy(1-\frac{1}{x+y})=0\Rightarrow (x+y-1)(x+y+1)-2xy.\frac{x+y-1}{x+y}=0\Rightarrow (x+y-1)(x+y+1-\frac{2xy}{x+y})=0[/tex]
Ta thấy: [tex]x+y+1-\frac{2xy}{x+y}\geq x+y+1-\frac{\frac{(x+y)^2}{2}}{x+y}=\frac{1}{2}(x+y)+1 > 0[/tex]
Từ đó [tex]x+y=1\Rightarrow \left\{\begin{matrix} x+y=1\\ x^2-y=1 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=1-x\\ x^2+x-1=1 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=1-x\\ x^2+x-2=0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=1-x\\ (x-1)(x+2)=0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=1\\ y=0 \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} x=-2\\ y=3 \end{matrix}\right.[/tex]