.[tex]I=\int[(2x^2 +3)sqrt{5(x-1)^3}]dx
[/tex]
Post sai nhưng trả lời chắc không thành vấn đề nhỉ !
u=[tex] \sqrt{5{(x-1)}^{3}} =>{u}^{2}=5{(x-1)}^{3} [/tex]
=>2udu= [tex]15{(x-1)}^{2}=>4udu/15 =2({x}^{2}-2x+2)dx[/tex]
=>I=[tex]\int (4{u}^{2}du/15)-\int 4x\sqrt{5{(x-1)}^{3}}dx -\int \sqrt{5{(x-1)}^{3}}dx[/tex]
=[tex]4/45 {u}^{3} -\int 4(x-1+1)\sqrt{5{(x-1)}^{3}}d(x-1) - \sqrt{20{(x-1)}^{5}}/5[/tex]
=[tex]4/9\sqrt{5{(x-1)}^{9}}- \sqrt{20{(x-1)}^{5}}/5-6\sqrt{5{(x-1)^{7}/7[/tex]