[tex]\int_{\frac{\pi }{3}}^{\frac{\pi }{6}}\frac{cotx - tanx}{sin2x.cos(2x + \frac{\pi }{4})}[/tex] = [tex]\frac{1}{\sqrt{2}}\int_{\frac{\pi }{3}}^{\frac{\pi }{6}}\frac{\sqrt{2}(cotx - tanx)}{sin2x.cos(2x + \frac{\pi }{4})} = \sqrt{2}.\int_{\frac{\pi }{3}}^{\frac{\pi }{6}}\frac{cos(\frac{\pi }{4})(cotx - tanx)}{sin2x.cos(2x+\frac{\pi }{4})} = \sqrt{2}\int_{\frac{\pi }{3}}^{\frac{\pi }{6}} \frac{cos (2x + \frac{\pi }{4} - 2x)(cotx - tanx)}{sin2x.cos(2x+\frac{\pi }{4})}[/tex]
Lúc này sử dụng cos(a - b) = cosa.cosb + sina.sinb
[tex]\sqrt{2}\int_{\frac{\pi }{3}}^{\frac{\pi}{6}}\frac{[cos(2x+\frac{\pi }{4}).cox2x + sin(2x+\frac{\pi }{4}.sin2x)](cotx - tanx)}{sin2x.cos(2x+\frac{\pi }{4})} = \sqrt{2}\int_{\frac{\pi }{3}}^{\frac{\pi}{6}}\frac{[((cos(2x+\frac{\pi }{4}).cos2x)(cotx - tanx)] + [sin(2x+\frac{\pi }{4}.sin2x)(cotx-tanx)]}{sin2x.cos(2x+\frac{\pi }{4})}[/tex]
Lúc này ta tách từng tích phân ra tính.
Tham khảm thêm ở đây:
https://vn.answers.yahoo.com/question/index?qid=20120629095128AAcUhMo