Bài làm của
niemkieuloveahbu:
Câu 1
[TEX]{\sqrt{2((x^2-x+\frac{1}{2})^2+x-\frac{1}{4})}\leq{{x^2-2x}}[/TEX]
\Leftrightarrow[TEX]\sqrt{2(x^4+x^2+\frac{1}{4}-2x^3-x+x^2+x-\frac{1}{4})}\leq{{x^2-2x}}[/TEX]
\Leftrightarrow[TEX]\sqrt{2(x^4-2x^3+2x^2)}\leq{{x^2-2x}}[/TEX]
\Leftrightarrow[TEX]\{x\geq2;x\leq0\\2x^4-4x^3+4x^2\leq{x^4-4x^3+4x^2}[/TEX]
\Leftrightarrow[TEX]\{x\geq2;x\leq0\\x^4\leq{0}[/TEX]
\Leftrightarrowx=0.
Vậy BPT có 1 nghiệm x=0.
1 điểm
Câu 3
[TEX]\{x\sqrt{1-y^2}=\frac{3}{4}\\y\sqrt{1-x^2}=\frac{1}{4}[/TEX]
ĐẶt x=sina,y=sinb,a,b[TEX]\in(\frac{-\pi}{2};\frac{\pi}{2})[/TEX]
ta có hệ :
\Leftrightarrow[TEX]\{sina\sqrt{1-sinb^2}=\frac{3}{4}\\sinb\sqrt{1-sina^2}=\frac{1}{4}[/TEX]
\Leftrightarrow[TEX]\{sinacosb=\frac{3}{4}\\sinbcosa=\frac{1}{4}\foral a,b\in(\frac{-\pi}{2};\frac{\pi}{2})[/TEX]
( ký hiệu ∀ dùng sai -0.25 điểm)
\Leftrightarrow[TEX]\{sin(a+b)=1\\sin(a-b)=\frac{1}{2}[/TEX]
\Leftrightarrow[TEX]\{a+b=\frac{\pi}{2}\\a-b=\frac{\pi}{6}\foral a,b\in(\frac{-\pi}{2};\frac{\pi}{2})[/TEX]
\Leftrightarrow[TEX]\{a=\frac{\pi}{3}\\b=\frac{\pi}{6}[/TEX]
\Leftrightarrow[TEX]\{x=\frac{sqrt{3}}{2}\\y=\frac{1}{2}[/TEX]
Vậy hệ có nghiệm [TEX]\{x=\frac{sqrt{3}}{2}\\y=\frac{1}{2}[/TEX]
0,75 điểm
Câu 5
[TEX]\frac{1}{2a^2+bc}+\frac{1}{2b^2+ca}+\frac{1}{2c^2+ab}\leq{(\frac{a+b+c}{ab+bc+ca})^2}[/TEX]
[TEX]\frac{1}{2a^2+bc}+\frac{1}{2b^2+ca}+\frac{1}{2c^2+ab}\leq{(\frac{a+b+c}{ab+bc+ca})^2}[/TEX]
Sử dụng BCS:
[TEX]\frac{1}{2a^2+bc}=\frac{\frac{(b+c)^2}{2}+bc}{(2a^2+bc)(\frac{(b+c)^2}{2}+bc)}\leq\frac{\frac{(b+c)^2}{2}+bc}{(a(b+c)+bc)^2}=\frac{\frac{(b+c)^2}{2}+bc}{(ab+bc+ca)^2}[/TEX]
tương tự
[TEX]\frac{1}{2b^2+ca}=\frac{\frac{(a+c)^2}{2}+ac}{(2b^2+ac)(\frac{(a+c)^2}{2}+ac)}\leq\frac{\frac{(a+c)^2}{2}+ac}{(b(a+c)+ac)^2}=\frac{\frac{(a+c)^2}{2}+ac}{(ab+bc+ca)^2}[/TEX]
[TEX]\frac{1}{2c^2+ba}=\frac{\frac{(b+a)^2}{2}+ba}{(2c^2+ba)(\frac{(b+a)^2}{2}+ba)}\leq\frac{\frac{(b+a)^2}{2}+ba}{(c(b+a)+bc)^2}=\frac{\frac{(b+c)^2}{2}+ba}{(ab+bc+ca)^2}[/TEX]
Cộng vế 3 BĐT \Rightarrow đpcm
1 điểm
Câu 7
[TEX]\frac{1}{sinA}+\frac{1}{sinB}+\frac{1}{sinC}=\frac{1}{cos{\frac{A}{2}}}+\frac{1}{cos{\frac{B}{2}}}+{\frac{1}{cos{\frac{C}{2}}}[/TEX]
Do A, B, C là các góc trong tam giác \Rightarrow sin A, sin B, sin C >0
Áp dụng BĐT AM-GM:
[TEX]\frac{1}{sinA}+\frac{1}{sinB}\geq{\frac{2}{\sqrt{sinAsinB}}=\frac{2}{sqrt{\frac{1}{2}(cos(A-B)-cos(A+B))}}=\frac{2}{\sqrt{\frac{1}{2}(1+cosC)}}={\frac{2}{\sqrt{{cos^2\frac{C}{2}}}}={\frac{2}{cos{\frac{C}{2}}}}; [/TEX] [TEX]{\frac{cosC}{2}}>0[/TEX] \forall tam giác ABC
Dấu"=" xảy ra \Leftrightarrow [TEX]\{sinA=sinB\\{cos(A-B)=1}[/TEX]
tương tự:
[TEX]\frac{1}{sinB}+\frac{1}{sinC}\geq{\frac{2}{\sqrt{sinBsinC}}=\frac{2}{sqrt{\frac{1}{2}(cos(B-C)-cos(B+C))}}=\frac{2}{\sqrt{\frac{1}{2}(1+cosA)}}={\frac{2}{\sqrt{{cos^2\frac{A}{2}}}}={\frac{2}{cos{\frac{A}{2}}}}[/TEX]; [TEX]{\frac{cosA}{2}}>0[/TEX] \forall tam giác ABC
Dấu "=" xảy ra \Leftrightarrow [TEX]\{sinB=sinC\\{cos(B-C)=1}[/TEX]
[TEX]\frac{1}{sinC}+\frac{1}{sinA}\geq{\frac{2}{\sqrt{sinAsinC}}=\frac{2}{sqrt{\frac{1}{2}(cos(A-C)-cos(A+C))}}=\frac{2}{\sqrt{\frac{1}{2}(1+cosB)}}={\frac{2}{\sqrt{{cos^2\frac{B}{2}}}}={\frac{2}{cos{\frac{B}{2}}}}[/TEX] [TEX]{\frac{cosB}{2}}>0[/TEX] \forall tam giác ABC
Dấu "=" xảy ra \Leftrightarrow [TEX]\{sinA=sinC\\{cos(A-C)=1}[/TEX]
Cộng các vế BĐT \Rightarrow đpcm. Dấu "="xảy ra \Leftrightarrow [TEX]\{sinB=sinC=sinA\\{cos(B-C)=cos(A-B)=cos(A-C)=1}[/TEX]\Leftrightarrow ABC là tam giác đều.
1 điểm
Câu9:
[TEX]\frac{1}{1-cosA}+\frac{1}{1-cosB}+\frac{1}{1-cosC}\geq6[/TEX]
\Leftrightarrow[TEX]\frac{1}{2sin^2\frac{A}{2}}+\frac{1}{2sin^2\frac{B}{2}}+\frac{1}{2sin^2\frac{C}{2}}\geq6[/TEX]
\Leftrightarrow[TEX]\frac{1}{sin^2\frac{A}{2}}+\frac{1}{sin^2\frac{B}{2}}+\frac{1}{sin^2\frac{C}{2}}\geq12[/TEX]
Cm bổ đề:
[TEX]sin{\frac{A}{2}}sin{\frac{B}{2}}sin{\frac{C}{2}\le{\frac{1}{8}[/TEX]
[TEX]sin{\frac{A}{2}}sin{\frac{B}{2}}sin{\frac{C}{2}={{\frac{1}{2}}(cos{\frac{A-B}{2}}-cos{\frac{A+B}{2}})sin\frac{C}{2}\leq{{\frac{1}{2}}(1-sin\frac{C})sin\frac{C}{2}\leq{\frac{1}{2}(\frac{1-sin\frac{C}{2}+sin\frac{C}{2}}{2}{{})^2=\frac{1}{8}[/TEX]( AM-GM với [TEX]sin{\frac{A}{2};sin{\frac{B}{2};sin{\frac{C}{2}>0)[/TEX]
Áp dụng AM-GM
[TEX]\frac{1}{sin^2\frac{A}{2}}+\frac{1}{sin^2\frac{B}{2}}+\frac{1}{sin^2\frac{C}{2}}\geq\frac{3}{\sqrt[3]{sin^2\frac{A}{2}sin^2\frac{B}{2}sin^2\frac{C}{2}}}\geq12[/TEX]
\Rightarrowđpcm
1 điểm
Câu 6:
[TEX]tan\frac{A}{2}+\frac{1}{tan\frac{A}{2}}+tan\frac{B}{2}+\frac{1}{tan\frac{B}{2}}+tan\frac{C}{2}+\frac{1}{tan\frac{C}{2}}\geq4sqrt{3}[/TEX]
sử dụng hệ thức cơ bản trong tam giác:
[TEX]tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\fra{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1[/TEX]
[TEX]cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}={cot}\frac{A}{2}cot\frac{B}{2}cot\frac{C}{2}[/TEX]
Và BDT:
[TEX]3(xy+yz+zx)\leq(x+y+z)^2[/TEX]
\Leftrightarrow[TEX]x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}(x-y)^2+\frac{1}{2}(y-z)^2+\frac{1}{2}(z-x)^2[/TEX]\Rightarrowluôn đúng.
Vận dụng:
[TEX][tan\frac{A}{2}+tan\frac{B}{2}+tan\frac{C}{2}]^2\ge{3(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\fra{C}{2}+tan\frac{C}{2}tan\frac{A}{2})=3[/TEX]
\Rightarrow[TEX]tan\frac{A}{2}+tan\frac{B}{2}+tan\frac{C}{2}\geq{\sqrt{3}[/TEX](1)
Áp dụng BDT AM-GM
[TEX]cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}{\geq}3{\sqrt[3]{cot\frac{A}{2}cot\frac{B}{2}cot\frac{C}{2}}[/TEX]
\Rightarrow[TEX]cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}{\geq}3{\sqrt[3]{cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}}[/TEX]
\Rightarrow[TEX](cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2})^2{{\geq}27[/TEX]
\Rightarrow[TEX]cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}{\geq}3sqrt{3}[/TEX]
\Leftrightarrow[TEX]\frac{1}{tan\frac{A}{2}}+\frac{1}{tan\frac{B}{2}}+\frac{1}{tan\frac{C}{2}}{\geq}3\sqrt{3}[/TEX](2)
Cộng (1) và (2) được đpcm.
1 điểm
Tổng điểm: 5,75 điểm