$$\left\{\begin{matrix} x+\frac{1}{y}=2 (1)\\y+\frac{1}{z}=2 (2)\\ z+\frac{1}{x}=2 (3) \end{matrix}\right$$
Cộng (1) (2) (3) theo vế ta có:
(x+x1)+(y+y1)+(z+z1)=6
Mặt khác: áp dụng Bđt cauchy ta có:
$$ [TEX]x+\frac{1}{x}[/TEX] $ $\geq 2 (4) $$
$$ [TEX]y+\frac{1}{y}[/TEX] $ $\geq 2 (5) $$
$$ [TEX]z+\frac{1}{z}[/TEX] $ $\geq 2 (6) $$
Cộng (4)(5)(6) theo vế ta có:
$$ [TEX](x+\frac{1}{x})+(y+\frac{1}{y})+(z+\frac{1}{z})[/TEX]$ $\geq6 $$
Vậy dấu = bđt xảy ra \Leftrightarrow x=x1;y=y1;z=z1
\Leftrightarrow x=y=z=1
Last edited by a moderator: