giải biểu thức

K

kulham_love

Last edited by a moderator:
H

huongmot

a)$P = \dfrac{x}{(\sqrt{x}+\sqrt{y})(1-\sqrt{y})}-\dfrac{y}{(\sqrt{x}+\sqrt{y})(\sqrt{x}+1)}- \dfrac{xy}{(1-\sqrt{y})(\sqrt{x}+1)}$
$P = \dfrac{x(\sqrt{x}+1)-y(1-\sqrt{y})-xy(\sqrt{x}+\sqrt{y})}{(\sqrt{x}+\sqrt{y})(1-\sqrt{y})(\sqrt{x}+1)}$
$P= \dfrac{(\sqrt{x})^3+x-y-(\sqrt{y})^3-xy(\sqrt{x}+\sqrt{y})}{(\sqrt{x}+\sqrt{y})(1-\sqrt{y})(\sqrt{x}+1)}$
$P= \dfrac{(\sqrt{x})^3-(\sqrt{y})^3+x-y-xy(\sqrt{x}+\sqrt{y})}{(\sqrt{x}+\sqrt{y})(1-\sqrt{y})(\sqrt{x}+1)}$
$P=\dfrac{(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)+ (\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})-xy(\sqrt{x}+\sqrt{y})}{(\sqrt{x}+\sqrt{y})(1-\sqrt{y})(\sqrt{x}+1)}$
$P= \dfrac{(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y+ \sqrt{x}-\sqrt{y}-xy)}{(\sqrt{x}+\sqrt{y})(1-\sqrt{y})(\sqrt{x}+1)}$
$P= \dfrac{(x-xy)-(\sqrt{xy}- \sqrt{x})+(y-\sqrt{y})}{(1-\sqrt{y})(\sqrt{x}+1)}$
$P=\dfrac{x(1-\sqrt{y})(1+\sqrt{y})+\sqrt{x}(1-\sqrt{y})-\sqrt{y}(1-\sqrt{y})}{(1-\sqrt{y})(\sqrt{x}+1)}$
$P=\dfrac{(1-\sqrt{y})(x+x\sqrt{y}+\sqrt{x}-\sqrt{y})}{(1-\sqrt{y})(\sqrt{x}+1)}$
$P= \dfrac{(\sqrt{x}+1)(\sqrt{x}+ \sqrt{xy}-\sqrt{y})}{\sqrt{x}+1}$
$P= \sqrt{x}+\sqrt{xy}-\sqrt{y}$

b)TXĐ: $x, y \ge 0; y \neq 1$
$P=2$
$\rightarrow \sqrt{x}+\sqrt{xy}-\sqrt{y}=2$
$\rightarrow \sqrt{x}(1+\sqrt{y}) - (\sqrt{y}+1)= 1$
$\rightarrow (1+\sqrt{y})(\sqrt{x}-1)=1= 1.1= -1.(-1)$
Vì $\sqrt{y}\ge 0$
nên $\sqrt{y}+1 >0$
$\rightarrow (1+\sqrt{y})(\sqrt{x}-1)=1= 1.1$
$\rightarrow x = 4; y =0(tm)$
 
Top Bottom