$(\sqrt{x+3}-\sqrt{x-1})(1+\sqrt{x^2+2x-3})$ \geq 4
ĐKXĐ : x \geq\ 1
$(\sqrt{x+3}-\sqrt{x-1})(1+\sqrt{x^2+2x-3})$ \geq 4
\Leftrightarrow $\frac{1}{\sqrt{x+3}+\sqrt{x-1}} . (1+\sqrt{x^2+2x-3})$ \geq 1
\Leftrightarrow $(1+\sqrt{x^2+2x-3})$ \geq $\sqrt{x+3}+\sqrt{x-1}$
\Leftrightarrow $(\sqrt{x+3}-\sqrt{x^2+2x-3})+(\sqrt{x-1}-1 )$ \leq 0
\Leftrightarrow $(\frac{-(x-2)(x+3)}{1+\sqrt{x^2+2x-3}} + \frac{x-2}{\sqrt{x-1}+1} $ \geq 0
\Leftrightarrow $(x-2)(\frac{-(x+3)}{1+\sqrt{x^2+2x-3}} + \frac{1}{\sqrt{x-1}+1} $ \geq 0
Nhận thấy với x \geq\ 1 thì :
$\frac{-(x+3)}{1+\sqrt{x^2+2x-3}} + \frac{1}{\sqrt{x-1}+1}$ \leq 0
do đó x-2 \geq 0 \Rightarrow x \geq 2