[tex]x^2y^2z^2+x^2z+y=3z^2\rightarrow x^2y^2+\frac{x^2}{z}+\frac{y}{z^2}=3\\P=\frac{z^4}{1+z^4(x^4+y^4)}=\frac{1}{\frac{1}{z^4}+x^4+y^4}\\\frac{1}{z^4}+x^4+y^4\geq \frac{2\left ( \frac{x^{2}}{z^{2}} + x^{2}y^{2} + \frac{y^{2}}{z^{2}} + \frac{1}{z^{2}} + x^{2} + y^{2} \right )-3 }{3}=\frac{2(\left ( x^{2}y^{2} + y^{2} \right ) + \left ( x^{2} + \frac{x^{2}}{z^{2}} \right ) + \left ( \frac{y^{2}}{z^{2}} + \frac{1}{z^{2}} \right ) ) )-3}{3}\geq \frac{2.2(xy^2+\frac{x^2}{z}+\frac{y}{z^2})-3}{3}=\frac{2.2.3-3}{3}=3\\\rightarrow P\leq \frac{1}{3}\\"="\Leftrightarrow x=y=z=1[/tex]