Ta có PT tiếp tuyến của Elip đi qua điểm $(x_0; y_0) \in (E) $ có dạng: $\dfrac {x_0x}{a^2}+\dfrac {y_0y}{b^2}=1$
\Leftrightarrow $b^2x_0x+a^2y_0y-a^2b^2=0 ( \Delta)$
có
$d_{(F_1;\Delta)}=\dfrac{|-b^2cx_0-a^2b^2|}{\sqrt{b^4x_0^2+a^4y_0^2}}$; $d_{(F_2;\Delta)}=\dfrac{|b^2cx_0-a^2b^2|}{\sqrt{b^4x_0^2+a^4y_0^2}}$
=>$d_{(F_1;\Delta)}.d_{(F_2;\Delta)}=\dfrac{|-b^2cx_0-a^2b^2||b^2cx_0-a^2b^2|}{b^4x_0^2+a^4y_0^2}=\dfrac{|b^4c^2x_0^2-a^4b^4|}{b^4x_0^2+a^4y_0^2}=\dfrac{b^4|c^2x_0^2-a^4|}{b^4x_0^2+a^4y_0^2}( * )$
có $\dfrac{x_0^2}{a^2}+\dfrac{y_0^2}{b^2}=1 =>a^2b^2x_0^2+a^4y_0^2=a^4b^2 =>a^4y_0^2=a^4b^2-a^2b^2x_0^2$
\Rightarrow $b^4x_0^2+a^4y_0^2=b^4x_0^2+a^4b^2-a^2b^2x_0^2=b^2(b^2x_0^2+a^4-a^2x_0^2)=b^2(a^4-c^2x_0^2) ( ** )$
mà $|c^2x_0^2-a^4|=a^4 - c^2x_0^2 $ vì $x_0$\leq a ( *** )
Từ ( * ), ( ** ) và ( *** ) ta được
$d_{(F_1;\Delta)}.d_{(F_2;\Delta)}=b^2$=> ĐPCM