Phương trình hoành độ: [imath]x^2-2mx-4=0[/imath]
[imath]\Delta'>0[/imath], Theo định lý Viète:
[math]\left\{\begin{matrix} & x_1+x_2=2m & \\ & x_1.x_2=-4 & \end{matrix}\right.[/math]Có
[math]S= \displaystyle \int ^{x_2}_{x_1}(-x^2+2mx+4)dx \\ =\displaystyle (\frac{-x^3}{3}+mx^2+4x)|^{x_2}_{x_1}\\ \displaystyle =(x_2-x_1)(\frac{-(x_1+x_2)^2+x_1x_2}{3}+m(x_1+x_2)+4)\\= \displaystyle \sqrt{(x_1+x_2)^2-4x_1.x_2}.(\frac{-(x_1+x_2)^2+x_1x_2}{3}+m(x_1+x_2)+4)\\ \displaystyle =\sqrt{4m^2+16}.(\frac{-4m^2-4}{3}+2m^2+4)\\ \displaystyle =\sqrt{4m^2+16}.\frac{2m^2+8}{3}= \displaystyle \frac{4}{3}\sqrt{(m^2+4)^3}\geq \frac{4}{3}\sqrt{4^3}=\frac{32}{3}[/math]Đẳng thức xảy ra khi [imath]m=0[/imath]