Đặt [TEX]p=a+b+c,q=ab+bc+ca,r=abc \Rightarrow 3=a^2+b^2+c^2=p^2-2q[/TEX]
Áp dụng BĐT Bunyakovsky dạng cộng mẫu ta có:
[tex]\sum_{cyc}\frac{a^3}{b^2-bc+c^2}=\sum_{cyc}\frac{a^4}{ab^2-abc+ac^2} \geq \frac{(a^2+b^2+c^2)^2}{ab^2+ac^2+bc^2+ba^2+ca^2+cb^2-3abc}=\frac{9}{pq-6r}[/tex]
Áp dụng BĐT Schur bậc 4 ta có:
[tex]r \geq \max\left \{ 0,\frac{(p^2-q)(4q-p^2)}{6p} \right \}[/tex]
+ Nếu [TEX]4q -p^2 \leq 0 \Rightarrow 2(p^2-3)-p^2 \leq 0 \Rightarrow p^2 \leq 6 \Rightarrow q=\frac{p^2-3}{2}\leq \frac{3}{2}[/TEX]
Ta có: [TEX]\frac{9}{pq-6r} \geq \frac{9}{pq}=p.\frac{9}{p^2.q} \geq p.\frac{9}{6.\frac{3}{2}}=p[/TEX]
+ Nếu [TEX]4q-p^2 \geq 0 \Rightarrow 2(p^2-3)-p^2 \geq 0 \Rightarrow p^2 \geq 6[/TEX]
Ta có: [TEX]\frac{9}{pq-6r}=\frac{9}{p.\frac{p^2-3}{2}-6.\frac{(p^2-q)(4q-p^2)}{6p}}=\frac{9}{p.\frac{p^2-3}{2}-6.\frac{(p^2+3)(p^2-6)}{12p}}=\frac{9}{p} \geq p[/TEX]( do [TEX]p^2 \leq 9[/TEX])