T
thienvamai


Câu 1:
$ \cdot 1$ Giải phương trình
$$\sqrt{3x+1} + \sqrt{2-x} = 3$$
$ \cdot 2$ Giải hệ phương trình
$$\left\{\begin{matrix} x+\dfrac{1}{x}+ y + \dfrac{1}{y} = \dfrac{9}{2}\\ \dfrac{1}{4} + \dfrac{3}{2}(x + \dfrac{1}{y}) = xy + \dfrac{1}{xy} \end{matrix}\right.$$
Câu 2:
$ \cdot 1$ Giả dụ $a,b,c$ là các số thực khác $0$ thỏa mãn đẳng thức $(a+b)(b+c)(c+a) = 8abc$. Chứng minh rằng:
$$\dfrac{a}{b+c} + \dfrac{b}{c+a} + \dfrac{c}{a+b} = \dfrac{3}{4} + \dfrac{ab}{(a+b)(b+c)} + \dfrac{bc}{(b+c)(c+a)} + \dfrac{ca}{(c+a)(a+b)}$$.
$\cdot 2$ Hỏi có bao nhiêu số nguyên dương có 5 chữ số $\overline{abcde}$ sao cho $\overline{abc} - (10d+e)$ chia hết cho $101$ ?
Câu 3:
Cho $\triangle ABC$ nhọn nội tiếp $(O)$ với $AB < AC$. Đường phân giác của $\angle BAC$ cắt $(O)$ tại $D \neq A$. Gọi $M$ là trung điểm của $AD$ và $E$ là điểm đối xứng với $D$ qua $O$. Giả dụ $(ABM)$ cắt $AC$ tại $F$. CMR:
$1) \triangle BDM \sim \triangle BCF$
$2) EF \perp AC$
Câu 4:
Giả sử $a,b,c,d$ là các số thực dương thỏa mãn $abc + bcd + cad + bad = 1$. Tìm giá trị nhỏ nhất của:
$$P = 4(a^3 + b^3 + c^3) + 9d^3$$
Nguồn: diendantoanhoc.net