Biến đổi tương đương: [tex]\frac{1}{\sqrt{a+3b}}+\frac{1}{\sqrt{b+3a}}\leq 2\Leftrightarrow \frac{1}{a+3b}+\frac{1}{b+3a}+\frac{2}{\sqrt{(a+3b)(b+3a)}}\leq 4\Leftrightarrow \frac{4(a+b)}{(a+3b)(b+3a)}+\frac{2}{\sqrt{(a+3b)(b+3a)}}\leq 4\Leftrightarrow 4(a+b)+2\sqrt{(a+3b)(b+3a)}\leq 4(a+3b)(b+3a)\Leftrightarrow a+b+\frac{1}{2}\sqrt{(a+3b)(b+3a)}\leq (a+3b)(b+3a)\Leftrightarrow (a+3b)(b+3a)-(a+b)\geq \frac{1}{2}\sqrt{(a+3b)(b+3a)}\Leftrightarrow 3(a+b)^2-(a+b)+4ab\geq \frac{1}{2}\sqrt{(a+3b)(b+3a)}[/tex]