K
katoriitto


Bài 1: Cho a+b+c = 0. CMR :
a, [TEX](a^2+b^2+c^2)^2 = 2(a^4+b^4+c^4)[/TEX]
b, [TEX]2(a^5 + b^5 + c^5)=5abc( a^2 + b^2 + c^2)[/TEX]
Bài 2 : CMR :
[TEX]1 + x + x^2 + x^3 + ........+ x^{31} = (1+x)(1+x^2)(1+x^4).......(1+x^{16}) [/TEX]
Bài 3 : CMR:
a, Nếu [TEX](a^2 + b^2)(x^2 + y^2) = (ax + by)^2[/TEX]
thì [TEX]\frac{a}{x} = \frac{b}{y} \forall x,y \not= 0 [/TEX]
b, Nếu [TEX](a^2 + b^2 + c^2)(x^2 + y^2 + z^2) = (ax + by + cz)^2[/TEX]
thì [TEX]\frac{a}{x} = \frac{b}{y} = \frac{c}{z} \forall x,y,z \not= 0[/TEX]
a, [TEX](a^2+b^2+c^2)^2 = 2(a^4+b^4+c^4)[/TEX]
b, [TEX]2(a^5 + b^5 + c^5)=5abc( a^2 + b^2 + c^2)[/TEX]
Bài 2 : CMR :
[TEX]1 + x + x^2 + x^3 + ........+ x^{31} = (1+x)(1+x^2)(1+x^4).......(1+x^{16}) [/TEX]
Bài 3 : CMR:
a, Nếu [TEX](a^2 + b^2)(x^2 + y^2) = (ax + by)^2[/TEX]
thì [TEX]\frac{a}{x} = \frac{b}{y} \forall x,y \not= 0 [/TEX]
b, Nếu [TEX](a^2 + b^2 + c^2)(x^2 + y^2 + z^2) = (ax + by + cz)^2[/TEX]
thì [TEX]\frac{a}{x} = \frac{b}{y} = \frac{c}{z} \forall x,y,z \not= 0[/TEX]