[TEX]1,\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}cosx.ln(x+\sqrt[]{1+x^2})dx [/TEX]
[TEX]2,\int_{0}^{\frac{\pi}{2}}\frac{x}{(cosx+sinx)^2}dx[/TEX]
[TEX]3,\int_{0}^{\frac{\pi}{2}} cos^{10}x+sin^{10}x-cos^4x.sin^4x dx[/TEX]
[TEX]4,\int_{}^{}(\frac{x}{x^3+2})^8dx[/TEX]
Câu 1:

[TEX]I = \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}cosx.ln(x+\sqrt[]{1+x^2})dx[/TEX]
Đặt [TEX]x = -t \Rightarrow dx = -dt[/TEX]
ĐC : [TEX]x = \frac{-\pi}{2} \Rightarrow t = \frac{\pi}{2} ; x = \frac{\pi}{2} \Rightarrow t = \frac{-\pi}{2}[/TEX]
[TEX]I = \int_{\frac{\pi}{2}}^{\frac{-\pi}{2}}cos(-t).ln(-t + \sqrt{1 + t^2})(-dt) = - \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}cost.ln(\sqrt{1 + t^2} - t)(-dt) = \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}cost.ln(\sqrt{1 + t^2} - t)dt[/TEX]
[TEX]= \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}cost.ln(\frac{1}{\sqrt{1 + t^2} + t})dt[/TEX] (nhân lượng liên hiệp)
[TEX]= \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}cost.ln[({\sqrt{1 + t^2} + t})^{-1}]dt = -\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}cost.ln(t + \sqrt{1 + t^2})dt[/TEX] [TEX]= -\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}cosx.ln(x + \sqrt{1 + x^2})dx = -I [/tex]
[tex]\Rightarrow 2I = 0 \Rightarrow I = 0 [/TEX]
