[Đại 8] Chứng minh chia hết

B

baochauhn1999

$A=5^{2n+1}+2^{n+4}+2^{n+1}$
$<=>A=5.25^n+16.2^n+2.2^n$
Vì: $25 \equiv 2(mod 23)$ nên:
$A \equiv 5.2^n+16.2^n+2.2^n(mod 23)$
$<=>A \equiv (5+16+2).2^n(mod 23)$
$<=>A \equiv 23.2^n(mod 23)$
$<=>A \equiv 0(mod 23)$
Vậy A chia hết cho 23.
 
Top Bottom