$f(x) = 4x^2 - 4x + 5 \\
= 4 \left ( x^2 - x + \dfrac{5}{4} \right ) \\
= 4 \left [ x^2 - 2.x. \dfrac{1}{2}+ \left ( \dfrac{1}{2} \right ) ^2 - \left ( \dfrac{1}{2} \right ) ^2 + \dfrac{5}{4} \right ] \\
= 4 \left [ \left ( x^2 - 2.x. \dfrac{1}{2}+ \dfrac{1}{4} \right ) - \dfrac{1}{4} + \dfrac{5}{4} \right ] \\
= 4 \left [ \left ( x - \dfrac{1}{2} \right ) ^2 +1 \right ] \\
= 4 \left ( x - \dfrac{1}{2} \right ) ^2 +4 \\$
Ta có $\left ( x - \dfrac{1}{2} \right ) ^2 \geq 0, \forall x \in \mathbb{R} \Leftrightarrow 4 \left ( x - \dfrac{1}{2} \right ) ^2 \geq 0, \forall x \in \mathbb{R}$
$\Leftrightarrow 4 \left ( x - \dfrac{1}{2} \right ) ^2 +4 \geq 4 > 0, \forall x \in \mathbb{R}$
Vậy đa thức $f(x)$ ban đầu không có nghiệm