đặt [TEX]N = \frac{b^4}{(a+b)(a^2 + b^2)} + \frac{c^4}{(b+c)(b^2+c^2)} + \frac{a^4}{(c+a)(c^2 + a^2)}[/TEX]
[TEX]\Rightarrow M - N = 0[/TEX]
[TEX]\Rightarrow 2M = M+N = \frac{a^4 + b^4}{(a+b)(a^2 + b^2)} + \frac{b^4 + c^4}{(b+c)(b^2+c^2)} + \frac{c^4 + a^4}{(c+a)(c^2 + a^2)}[/TEX]
ta có
[TEX]a^4 + b^4 = \frac{1}{2} . 2(a^4 + b^4) \geq \frac{1}{2}. (a^2 + b^2)^2 = \frac{1}{4} . 2 (a^2 + b^2)(a^2 + b^2) \geq \frac{1}{4} . (a+b)^2 . (a^2 + b^2)[/TEX]
tương tự
[TEX]b^4 + c^4 = \frac{1}{2} . 2(b^4 + c^4) \geq \frac{1}{2}. (b^2 + c^2)^2 = \frac{1}{4} . 2 (b^2 + c^2)(b^2 + c^2) \geq \frac{1}{4} . (b+c)^2 . (b^2 + c^2)[/TEX]
[TEX]c^4 + a^4 = \frac{1}{2} . 2(c^4 + a^4) \geq \frac{1}{2}. (c^2 + a^2)^2 = \frac{1}{4} . 2 (c^2 + a^2)(c^2 + a^2) \geq \frac{1}{4} . (c+a)^2 . (c^2 + a^2)[/TEX]
[TEX]\Rightarrow 2M \geq \frac{a+b+c}{2} = 2[/TEX]
[TEX]\Rightarrow M \geq 1[/TEX]