(a+b+c)^2 =3(ab+ac+bc)
=>2(a+b+c)^2 =6(ab+ac+bc)
=>2(a^2 +b^2 +c^2 +2ab+2ac+2bc)=6ab+6ac+6bc
=>2a^2 +2b^2 +2c^2 +4ab+4ac+4bc-6ab-6ac-6bc=0
=>2a^2 +2b^2 +2c^2 -2ab-2ac-2bc=0
=>(a^2 -2ab+b^2)+(a^2 -2ac+c^2)+(b^2 -2bc+c^2)=0
=>(a-b)^2 +(a-c)^2 +(b-c)^2 =0
<=>(a-b)^2 =0 ;(a-c)^2 =0 ;(b-c)^2 =0. (vì (a-b)^2 ;(b-c)^2 ;(a-c)^2 >=0 với mọi a;b;c)
=>a-b=0;a-c=0;b-c=0 =>a=b;b=c;a=c =>a=b=c
=>(a+b)(a+c)(b+c)/abc =2a.2b.2c/abc=8abc/abc =8 (vì a=b=c(cmt)) (đpcm)