N
nhocdangyeu789


Bài 1:
[TEX]\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}\geq a^2b+b^2c+c^2a[/TEX]
Bài 2:
[TEX]\frac{a^6}{b^2c^2}+\frac{b^6}{c^2a^2}+\frac{c^6}{a^2b^2}\geq ab+bc+ca[/TEX]
Bài 3:
[TEX]\frac{1}{\sqrt[]{a}}+\frac{1}{\sqrt[]{b}}+\frac{2\sqrt[]{2}}{\sqrt[]{c}}\geq\frac{8}{\sqrt[]{a+b+c}}[/TEX]
Bài 4:
[TEX]\frac{1}{a^2}+\frac{1}{b^2}+\frac{8}{c^2}\geq\frac{64}{(a^2+b^2+c^2)}[/TEX]
[TEX]\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}\geq a^2b+b^2c+c^2a[/TEX]
Bài 2:
[TEX]\frac{a^6}{b^2c^2}+\frac{b^6}{c^2a^2}+\frac{c^6}{a^2b^2}\geq ab+bc+ca[/TEX]
Bài 3:
[TEX]\frac{1}{\sqrt[]{a}}+\frac{1}{\sqrt[]{b}}+\frac{2\sqrt[]{2}}{\sqrt[]{c}}\geq\frac{8}{\sqrt[]{a+b+c}}[/TEX]
Bài 4:
[TEX]\frac{1}{a^2}+\frac{1}{b^2}+\frac{8}{c^2}\geq\frac{64}{(a^2+b^2+c^2)}[/TEX]
Last edited by a moderator: