CMR với mọi số tự nhiên n≥2 thì 1 + 1/2 + 1/3 + 1/4 + ... + 1/(2^n-1) < n
Ta có:
$\dfrac12+\dfrac13<2.\dfrac12=1$
$\dfrac14+\dfrac15+\dfrac16+\dfrac17<4.\dfrac14=1$
$...$
$\dfrac1{2^{n-1}}+\dfrac1{2^{n-1}+1}+\dfrac1{2^{n-1}+2}+...+\dfrac1{2^n-1}<2^{n-1}.\dfrac1{2^{n-1}}=1$
$\Rightarrow 1+\dfrac12+\dfrac13+...+\dfrac1{2^n-1}<1+1+1+...+1$($n$ số $1$)$=n. 1=n$