a)Ta có:[tex]\frac{1}{ab+a+2}=\frac{1}{ab+1+a+1}\leq \frac{1}{4}(\frac{1}{ab+1}+\frac{1}{a+1})=\frac{1}{4}(\frac{abc}{abc+ab}+\frac{1}{a+1})=\frac{1}{4}(\frac{c}{c+1}+\frac{1}{a+1})[/tex]
Tương tự ta có đpcm.
c)[tex]\sqrt{x+y}=\sqrt{\frac{3}{2}}.\sqrt{(x+y).\frac{2}{3}}=\sqrt{\frac{3}{2}}.\frac{x+y+\frac{2}{3}}{2}[/tex]
Chứng minh tương tự ta có đpcm.
b.
Cũng hơi khó nhai đấy
[tex]x^2-x\sqrt{y}+x+y-\sqrt{y}+1\\=x^2-x(\sqrt{y}-1)+\frac{1}{4}(y-2\sqrt{y}+1)+\frac{3}{4}y-\frac{1}{2}\sqrt{y}+\frac{3}{4}\\=(x-\frac{\sqrt{y}}{2}+\frac{1}{2})^2+(\frac{\sqrt{3y}}{2}-\frac{1}{2\sqrt{3}})^2+\frac{2}{3}\geq \frac{2}{3}[/tex]
Dấu = tự tìm :V