Chứng minh

iceghost

Cựu Mod Toán
Thành viên
TV BQT xuất sắc nhất 2016
20 Tháng chín 2013
5,018
7,484
941
TP Hồ Chí Minh
Đại học Bách Khoa TPHCM
chứng minh pt luôn có nghiệm với mọi giá trị của tham số m:
[tex]\LARGE m(x+2)^{2}(2x-3)^{3}+x-1=0[/tex]
Xét hàm số $f(x) = m(x+2)^{2}(2x-3)^{3}+x-1$. Ta có $f(x)$ liên tục trên $\mathbb{R}$
Có $f(-2) \cdot f(\dfrac{3}2) = (-3) \cdot \dfrac12 < 0$ nên $f(x) = 0$ có nghiệm trong khoảng $(-2 ;\dfrac{3}2)$
 
Top Bottom