chứng minh

N

nerversaynever

Từ giả thiết ta có
[TEX]\frac{1}{{y^2 z^2 }} + \frac{1}{{x^2 z^2 }} + \frac{1}{{y^2 x^2 }} = \frac{3}{{xyz}}[/TEX]
Lại có
[TEX]\begin{array}{l}\frac{1}{{y^2 z^2 }} + \frac{1}{{x^2 z^2 }} + \frac{1}{{y^2 x^2 }} \ge \frac{1}{3}\left( {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{zx}}} \right)^2 \\ \left( {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{zx}}} \right)^{3/2} \ge \frac{{3\sqrt 3 }}{{xyz}} \\ \to \left( {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{zx}}} \right)^{3/2} \ge \frac{1}{{\sqrt 3 }}\left( {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{zx}}} \right)^2 \Rightarrow \frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{zx}} \le 3 \\ \end{array}[/TEX]
Mặt khác
[TEX]\begin{array}{l}\frac{{x^2 }}{{x^4 + yz}} \le \frac{{\left( {x^2 + 1} \right)^2 }}{{4\left( {x^4 + yz} \right)}} \le \frac{1}{4}\left( {1 + \frac{1}{{yz}}} \right) \\ \to VT \le \frac{3}{4} + \frac{1}{4}\left( {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{zx}}} \right) \le \frac{3}{4} + \frac{3}{4} = \frac{3}{2} \\ \end{array}[/TEX]
 
E

eye_smile

Có: $x^4+yz \ge 2x^2\sqrt{yz}$

\Rightarrow $\dfrac{x^2}{x^4+yz} \le \dfrac{x^2}{2x^2\sqrt{yz}}=\dfrac{1}{2\sqrt{yz}}$

TT, có: $\dfrac{y^2}{y^4+xz} \le \dfrac{1}{2\sqrt{zx}}$

$\dfrac{z^2}{z^4+xy} \le \dfrac{1}{2\sqrt{xy}}$

\Rightarrow $VT \le \dfrac{1}{2}(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}) \le \dfrac{1}{4}(\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z})=\dfrac{1}{2}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})=\dfrac{1}{2}.\dfrac{xy+yz+xz}{xyz} \le \dfrac{1}{2}.\dfrac{x^2+y^2+z^2}{xyz}=\dfrac{3}{2}$
 
Top Bottom