chứng minh

M

minhduccay

S

sam_chuoi

Umbala

Có (m-n)+(n-p)+(p-m)=0. Suy ra
(mnp+npm+pmn)=(np)(pm)p+npm+pmn=(np)(pm)(nm)mnp(\dfrac{m-n}{p}+\dfrac{n-p}{m}+\dfrac{p-m}{n})=\dfrac{-(n-p)-(p-m)}{p}+\dfrac{n-p}{m}+\dfrac{p-m}{n}=\dfrac{(n-p)(p-m)(n-m)}{mnp}. Tương tự cm pmn+mnp+npm)=9mnp(mn)(np)(pm)\dfrac{p}{m-n} + \dfrac{m}{n-p} + \dfrac{n}{p-m})=\dfrac{-9mnp}{(m-n)(n-p)(p-m)}. Nhân 2 bt trên lại được đpcm.
 
0

0973573959thuy

Cho m + n + p = 0. Chứng minh:
(mnp+npm+pmn)(pmn+mnp+npm)(\dfrac{m-n}{p} + \dfrac{n-p}{m} + \dfrac{p-m}{n})(\dfrac{p}{m-n} + \dfrac{m}{n-p} + \dfrac{n}{p-m}) = 9

Cách khác :

Đặt mnp=a;npm=b;pmn=c\dfrac{m - n}{p} = a; \dfrac{n - p}{m} = b; \dfrac{p - m}{n} = c thì : pmn=1a;mnp=1b;npm=1c\dfrac{p}{m-n} = \dfrac{1}{a}; \dfrac{m}{n-p} = \dfrac{1}{b}; \dfrac{n}{p-m} = \dfrac{1}{c}

Ta cần chứng minh : (a+b+c)(1a+1b+1c)=9(a + b + c)(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}) = 9

Thật vậy : (a+b+c)(1a+1b+1c)=3+b+ca+a+cb+a+bc(a + b + c)(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}) = 3 + \dfrac{b + c}{a} + \dfrac{a + c}{b} + \dfrac{ a + b}{c}

Ta có : a+bc=(mnp+npm).npm=m2mn+pnp2pm.npm=npm.(npm)=npm(mnp+2n)=2n2pm\dfrac{a + b}{c} = (\dfrac{m - n}{p} + \dfrac{n - p}{m}). \dfrac{n}{p - m} = \dfrac{m^2 - mn + pn - p^2}{pm}. \dfrac{n}{p - m} = \dfrac{n}{pm}.(n - p - m) = \dfrac{n}{pm}(- m - n - p + 2n) = \dfrac{2n^2}{pm}

Tương tự : b+ca=2p2mn;a+cb=2m2pn\dfrac{b + c}{a} = \dfrac{2p^2}{mn}; \dfrac{a + c}{b} = \dfrac{2m^2}{pn}

(a+b+c)(1a+1b+1c)=2n2pm+2p2mn+2m2pn+3=2(m3+n3+p3)pmn=2.3pmnpmn+3=9\rightarrow (a + b + c)(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}) = \dfrac{2n^2}{pm} + \dfrac{2p^2}{mn} + \dfrac{2m^2}{pn} + 3 = \dfrac{2(m^3 + n^3 + p^3)}{pmn} = \dfrac{2.3pmn}{pmn} + 3 = 9 (dpcm)
 
Top Bottom