chứng minh

S

sam_chuoi

Umbala

Có (m-n)+(n-p)+(p-m)=0. Suy ra
$(\dfrac{m-n}{p}+\dfrac{n-p}{m}+\dfrac{p-m}{n})=\dfrac{-(n-p)-(p-m)}{p}+\dfrac{n-p}{m}+\dfrac{p-m}{n}=\dfrac{(n-p)(p-m)(n-m)}{mnp}$. Tương tự cm $\dfrac{p}{m-n} + \dfrac{m}{n-p} + \dfrac{n}{p-m})=\dfrac{-9mnp}{(m-n)(n-p)(p-m)}$. Nhân 2 bt trên lại được đpcm.
 
0

0973573959thuy

Cho m + n + p = 0. Chứng minh:
$(\dfrac{m-n}{p} + \dfrac{n-p}{m} + \dfrac{p-m}{n})(\dfrac{p}{m-n} + \dfrac{m}{n-p} + \dfrac{n}{p-m})$ = 9

Cách khác :

Đặt $\dfrac{m - n}{p} = a; \dfrac{n - p}{m} = b; \dfrac{p - m}{n} = c$ thì : $\dfrac{p}{m-n} = \dfrac{1}{a}; \dfrac{m}{n-p} = \dfrac{1}{b}; \dfrac{n}{p-m} = \dfrac{1}{c}$

Ta cần chứng minh : $(a + b + c)(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}) = 9$

Thật vậy : $(a + b + c)(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}) = 3 + \dfrac{b + c}{a} + \dfrac{a + c}{b} + \dfrac{ a + b}{c}$

Ta có : $\dfrac{a + b}{c} = (\dfrac{m - n}{p} + \dfrac{n - p}{m}). \dfrac{n}{p - m} = \dfrac{m^2 - mn + pn - p^2}{pm}. \dfrac{n}{p - m} = \dfrac{n}{pm}.(n - p - m) = \dfrac{n}{pm}(- m - n - p + 2n) = \dfrac{2n^2}{pm}$

Tương tự : $\dfrac{b + c}{a} = \dfrac{2p^2}{mn}; \dfrac{a + c}{b} = \dfrac{2m^2}{pn}$

$\rightarrow (a + b + c)(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}) = \dfrac{2n^2}{pm} + \dfrac{2p^2}{mn} + \dfrac{2m^2}{pn} + 3 = \dfrac{2(m^3 + n^3 + p^3)}{pmn} = \dfrac{2.3pmn}{pmn} + 3 = 9$ (dpcm)
 
Top Bottom