[tex]S=\frac{2}{2\sqrt{1}}+...+\frac{2}{2\sqrt{25}}[/tex]
Ta có: [tex]2\sqrt{1}< \sqrt{1}+\sqrt{2}=\frac{(\sqrt{2}+\sqrt{1})(\sqrt{2}-\sqrt{1})}{\sqrt{2}-\sqrt{1}}=\frac{1}{\sqrt{2}-1}\Rightarrow \frac{2}{2\sqrt{1}}> 2(\sqrt{2}-1)[/tex]
Tương tự thì [tex]S> 2(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{25}-\sqrt{24})=2(\sqrt{25}-1)=8[/tex]
[tex]2\sqrt{2}> \sqrt{1}+\sqrt{2}=\frac{1}{\sqrt{2}-1}\Rightarrow \frac{2}{2\sqrt{2}}< 2(\sqrt{2}-1)[/tex]
Tương tự thì [tex]S< 1+2(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{25}-\sqrt{25})=1+2(\sqrt{25}-1)=9[/tex]