[TEX](x_1p-y_1q)^{2n}=[(x_1p-y_1q)^n]^2 \geq 0[/TEX]
tương tự [TEX](x_2p-y_2q)^{2n}\geq 0[/TEX]
....
[TEX](x_mp-y_mq)^{2n}\geq 0[/TEX]
=>[TEX] (x_1p-y_1q)^{2n}+(x_2p-y_2q)^{2n}+...+(x_mp-y_mq)^{2n} \leq 0[/TEX]
khi và chỉ khi
[TEX](x_1p-y_1q)^{2n}=0[/TEX]
[TEX](x_2p-y_2q)^{2n}=0[/TEX]
....
[TEX](x_mp-y_mq)^{2n}=0[/TEX]
<=>[TEX]\frac{x_1}{y_1}=\frac{q}{p}
[/TEX]
[TEX]\frac{x_2}{y_2}=\frac{q}{p}[/TEX]
....
[TEX]\frac{x_m}{y_m}=\frac{q}{p}[/TEX]
<=>[TEX]\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{y_m}=\frac{q}{p}[/TEX]
áp dụng t/c dãy tỉ số bằng nhau
[TEX]\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{y_m}=\frac{q}{p}=\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}[/TEX] (đpcm)