Toán 9 Chứng minh Hình học

ruthenii

Học sinh
Thành viên
18 Tháng sáu 2020
28
64
41
Bà Rịa - Vũng Tàu
bảo tàng ngây thơ
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Cho đường tròn (O ; R) và điểm M nằm ngoài đường tròn (O). Từ M kẻ các tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD với (O) (MCD không đi qua tâm, C nằm giữa M và D). Gọi K là trung điểm của CD.
a) Chứng minh tứ giác AMBK nội tiếp.
b) OK cắt AB tại N. Chứng minh ND, NC là các tiếp tuyến của (O).
c) Gọi giao điểm của AB và CD là I. CMR: [tex]\frac{IB}{IA}=\frac{NB}{NA}[/tex].
d) CMR khi cát tuyến MCD thay đổi thì trọng tâm G của [tex]\Delta BCD[/tex] luôn chạy trên một đường tròn cố định.​
Mọi người giúp mình với, mình k biết làm câu nào cả...
 

iceghost

Cựu Mod Toán
Thành viên
TV BQT xuất sắc nhất 2016
20 Tháng chín 2013
5,018
7,484
941
TP Hồ Chí Minh
Đại học Bách Khoa TPHCM
55_1.png
a) Bạn chứng minh $MAOB$ và $MAOK$ là các tứ giác nội tiếp
Từ đó $\widehat{MKA} = \widehat{MOA} = \widehat{MBA}$ nên tứ giác $AMBK$ nội tiếp

b) Gọi $H$ là giao điểm của $OM$ và $AB$.
Dùng hệ thức lượng bạn có $OH \cdot OM = OA^2 = OD^2$
Dùng tam giác đồng dạng bạn có $OH \cdot OM = OK \cdot ON$
Từ đó $OK \cdot ON = OD^2 = OC^2$
Từ đây dùng tam giác đồng dạng bạn chứng minh được $\widehat{ODN} = \widehat{OKD} = 90^\circ$

c) Dùng các tứ giác nội tiếp bạn có $\widehat{MKA} = \widehat{MBA} = \widehat{MAB} = \widehat{MBK}$, suy ra $KI$ là đường phân giác trong $\widehat{AKB}$
Do $KN \perp KI$ nên $KN$ là đường phân giác ngoài $\triangle{KAB}$
Tới đây $\dfrac{IA}{IB} = \dfrac{KA}{KB} = \dfrac{NA}{NB}$

d) Gọi $J$ là trung điểm $OM$ và $L$ là trọng tâm $\triangle{BOM}$
Theo định lý Ta-lét có $\dfrac{LG}{JK} = \dfrac{BL}{BJ} = \dfrac23$ nên $LG = \dfrac23 JK = \dfrac13 OM$ không đổi
Vậy $G$ chạy trên đường tròn tâm $L$, bán kính $\dfrac13 OM$ cố định
 
Top Bottom