cho $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$ Chứng minh: $\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}=\frac{3}{abc}$
[tex]\frac{1}{a}+\frac{1}{b}=-\frac{1}{c} \\ \Leftrightarrow \frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left ( \frac{1}{a}+\frac{1}{b} \right )=\left ( \frac{-1}{c} \right )^3 \\ \Leftrightarrow \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab}.\left ( \frac{-1}{c} \right )=0 \\ \Leftrightarrow \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}[/tex]