Theo bài:
[tex]x+y=(\sqrt{x}+\sqrt{y}-\sqrt{z})^2\Leftrightarrow x+y=x+y+z+2(\sqrt{xy}-\sqrt{xz}-\sqrt{yz})\\ \Leftrightarrow z+2(\sqrt{xy}-\sqrt{xz}-\sqrt{yz})=0\\ \Leftrightarrow z=2(\sqrt{xz}+\sqrt{yz}-\sqrt{xy})[/tex]
Ta có:
[tex]x+(\sqrt{x}-\sqrt{z})^2=x+z-z+(\sqrt{x}-\sqrt{z})^2\\ =x+z-2(\sqrt{xz}+\sqrt{yz}-\sqrt{xy})+(\sqrt{x}-\sqrt{z})^2\\ =(x+z-2\sqrt{xz})+2\sqrt{y}(\sqrt{x}-\sqrt{z})+(\sqrt{x}-\sqrt{z})^2\\ =2(\sqrt{x}-\sqrt{z})^2+2\sqrt{y}(\sqrt{x}-\sqrt{z})=2(\sqrt{x}-\sqrt{z})(\sqrt{x}-\sqrt{z}+\sqrt{y})[/tex] (1)
Chứng minh tương tự với [tex]y+(\sqrt{y}-\sqrt{z})^2[/tex] ta cũng có: [tex]y+(\sqrt{y}-\sqrt{z})^2=2(\sqrt{y}-\sqrt{z})(\sqrt{y}-\sqrt{z}+\sqrt{x})[/tex] (2)
Từ (1) và (2) ta có:
[tex]\frac{x+(\sqrt{x}-\sqrt{z})^2}{y+(\sqrt{y}-\sqrt{z})^2}=\frac{2(\sqrt{x}-\sqrt{z})(\sqrt{x}-\sqrt{z}+\sqrt{y})}{2(\sqrt{y}-\sqrt{z})(\sqrt{x}-\sqrt{z}+\sqrt{y})}=\frac{\sqrt{x}-\sqrt{z}}{\sqrt{y}-\sqrt{z}}[/tex] (đpcm)