P
phannhungockhanh


Bài I: TÍNH
B=[TEX]\frac{1}{2+\sqrt{2}}[/TEX]+[TEX]\frac{1}{3\sqrt{2}+2\sqrt{3}}[/TEX]+...+[TEX]\frac{1}{2005\sqrt{2004}+2004\sqrt{2005}}[/TEX]
C=[TEX]\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}[/TEX]+[TEX]\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}[/TEX]+...+[TEX]\sqrt{1+\frac{1}{2002^2}+\frac{1}{2003^2}}[/TEX]
BÀI 2: cho x,y,z>0 thỏa mãn xy+yz+zx=1
TÍNH A= x[TEX]\sqrt{\frac{(1+y^2)(1+z^2)}{1+x^2}}[/TEX]+y[TEX]\sqrt{\frac{(1+z^2)(1+x^2)}{1+y^2}}[/TEX]+z[TEX]\sqrt{\frac{(1+x^2)(1+y^2)}{1+z^2}}[/TEX]
BÀI 3: cho [TEX]a^2+b^2+c^2[/TEX]=ab+bc+ca
chứng minh rằng: a=b=c
BÀI 4: cho x,y,z là 3 số dương t/m: x+y+z=3. CMR:
[TEX]\frac{x}{x+\sqrt{3x+yz}}[/TEX]+[TEX]\frac{y}{y+\sqrt{3y+xz}}[/TEX]+[TEX]\frac{z}{z+\sqrt{3z+yx}}[/TEX]\leq1
thank you very much
B=[TEX]\frac{1}{2+\sqrt{2}}[/TEX]+[TEX]\frac{1}{3\sqrt{2}+2\sqrt{3}}[/TEX]+...+[TEX]\frac{1}{2005\sqrt{2004}+2004\sqrt{2005}}[/TEX]
C=[TEX]\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}[/TEX]+[TEX]\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}[/TEX]+...+[TEX]\sqrt{1+\frac{1}{2002^2}+\frac{1}{2003^2}}[/TEX]
BÀI 2: cho x,y,z>0 thỏa mãn xy+yz+zx=1
TÍNH A= x[TEX]\sqrt{\frac{(1+y^2)(1+z^2)}{1+x^2}}[/TEX]+y[TEX]\sqrt{\frac{(1+z^2)(1+x^2)}{1+y^2}}[/TEX]+z[TEX]\sqrt{\frac{(1+x^2)(1+y^2)}{1+z^2}}[/TEX]
BÀI 3: cho [TEX]a^2+b^2+c^2[/TEX]=ab+bc+ca
chứng minh rằng: a=b=c
BÀI 4: cho x,y,z là 3 số dương t/m: x+y+z=3. CMR:
[TEX]\frac{x}{x+\sqrt{3x+yz}}[/TEX]+[TEX]\frac{y}{y+\sqrt{3y+xz}}[/TEX]+[TEX]\frac{z}{z+\sqrt{3z+yx}}[/TEX]\leq1
thank you very much