

Cho tứ giác ABCD. Gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA và I là trung điểm FH, M là điểm tùy ý. Chứng minh rằng:
a)[tex]\underset{AF}{\rightarrow}[/tex]+[tex]\underset{BG}{\rightarrow} + \underset{CH}{\rightarrow} + \underset{DE}{\rightarrow} = \underset{0}{\rightarrow}[/tex]
b)[tex]\underset{AB}{\rightarrow}+\underset{AC}{\rightarrow}+\underset{AD}{\rightarrow}=4\underset{AI}{\rightarrow}[/tex]
c)[tex]\underset{MA}{\rightarrow}+\underset{MB}{\rightarrow}+\underset{MC}{\rightarrow}+\underset{MD}{\rightarrow}=\underset{ME}{\rightarrow}+\underset{MF}{\rightarrow}+\underset{MG}{\rightarrow}+\underset{MH}{\rightarrow}[/tex]
a)[tex]\underset{AF}{\rightarrow}[/tex]+[tex]\underset{BG}{\rightarrow} + \underset{CH}{\rightarrow} + \underset{DE}{\rightarrow} = \underset{0}{\rightarrow}[/tex]
b)[tex]\underset{AB}{\rightarrow}+\underset{AC}{\rightarrow}+\underset{AD}{\rightarrow}=4\underset{AI}{\rightarrow}[/tex]
c)[tex]\underset{MA}{\rightarrow}+\underset{MB}{\rightarrow}+\underset{MC}{\rightarrow}+\underset{MD}{\rightarrow}=\underset{ME}{\rightarrow}+\underset{MF}{\rightarrow}+\underset{MG}{\rightarrow}+\underset{MH}{\rightarrow}[/tex]