Chứng minh rằng
a , [tex]21^{10} -1 \vdots 200[/tex]
b , [tex]39^{20}+ 39^{13} \vdots 40[/tex]
c , [tex]2^{60} + 5^{30} \vdots 41[/tex]
a, $21^{10}-1\\=21^{10}+21^9+...+21-21^9-21^8-...-21\\=(21-1)(21^9+21^8+...+21+1)\\=20(\overline{A}1+\overline{B}1+...+\overline{K}1)\\=20.\overline{X}0\\=200.\overline{X}\vdots 200\Rightarrow đpcm$
(bn có thể giải kiểu đồng dư nhé

)
b, $39\equiv -1(mod 40)\\\Leftrightarrow 39^{20}\equiv 1(mod40)\\\Leftrightarrow 39^{13}\equiv -1(mod 40)\\\Rightarrow 39^{20}+39^{13}\equiv -1+1\equiv 0(mod 40)\\\Rightarrow đpcm$
c, $(20^{10})^{6}\equiv 40^6\equiv (-1)^6\equiv 1(mod41)\\(5^{10})^3\equiv 40^3\equiv (-1)^3\equiv -1(mod40)\\\Leftrightarrow 2^{60}+5^{30}\equiv -1+1\equiv 0(mod 41)\\\Rightarrow đpcm$