Toán 9 Chứng minh biểu thức nhỏ hơn hoặc bằng 1

Junery N

Cựu Hỗ trợ viên
HV CLB Địa lí
Thành viên
23 Tháng mười một 2019
4,605
12,670
1,021
Nam Định
In the sky

kido2006

Cựu TMod Toán
Thành viên
26 Tháng một 2018
1,693
2
2,653
401
Bắc Ninh
THPT Chuyên Bắc Ninh
Với [tex]x;y;z[/tex] là các số thực dương sao cho: [tex]x.y.z=\frac{1}{6}[/tex].
Chứng minh: [tex]\frac{1}{x^3+8y^3+1}+\frac{1}{8y^3+27z^3+1}+\frac{1}{27z^3+x^3+1}\leq 1[/tex].
:meomun19
Đặt [tex]\left\{\begin{matrix} a=x\\ b=2y\\ c=3z \end{matrix}\right.[/tex]
Thì ta có [tex]a.b.c=1[/tex] và cần chứng minh [tex]\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\leq 1[/tex].
Đây là bổ đề quen thuộc rùi
Ta có [tex]a^3+b^3\geq ab(a+b)\Leftrightarrow (a+b)(a-b)^2\geq 0;\forall a,b>0[/tex]
Áp dụng ta có [tex]\sum \frac{1}{a^3+b^3+1}=\sum \frac{1}{a^3+b^3+abc}\leq \sum \frac{1}{ab(a+b)+abc}=\sum \frac{c}{abc(a+b+c)}=\sum\frac{c}{(a+b+c)}=1(dpcm)[/tex]
 
Top Bottom