

CMR: Nếu $a,b,c$ là các số thỏa mãn các BĐT:
$\dfrac{a^2}{a+b} + \dfrac{b^2}{b+c} + \dfrac{c^2}{c+a} \geqslant \dfrac{c^2}{a+b} + \dfrac{a^2}{b+c} + \dfrac{b^2}{c+a}\geqslant \dfrac{b^2}{a+b} + \dfrac{c^2}{b+c} + \dfrac{a^2}{c+a}$
thì [tex]\left | a \right |=\left | b \right |=\left | c \right |[/tex]
$\dfrac{a^2}{a+b} + \dfrac{b^2}{b+c} + \dfrac{c^2}{c+a} \geqslant \dfrac{c^2}{a+b} + \dfrac{a^2}{b+c} + \dfrac{b^2}{c+a}\geqslant \dfrac{b^2}{a+b} + \dfrac{c^2}{b+c} + \dfrac{a^2}{c+a}$
thì [tex]\left | a \right |=\left | b \right |=\left | c \right |[/tex]