Cho $t\in \left ( 0;1 \right )$. Chứng minh bất đẳng thức sau:
$t+t\sqrt{1-t^{2}}\leq \frac{3\sqrt{3}}{4}$
Ta có: [TEX]t \in (0;1) \Rightarrow \sqrt{1-t^2} > 0[/TEX]
Khi đó ta có:
[TEX]t+t \sqrt{1-t^2}=t+\frac{\sqrt3}{2} \cdot 2 \cdot \frac {t} {\sqrt3} \cdot \sqrt{1-t^2} \\\leq t+\frac{\sqrt3}{2} \cdot \left ( \frac{t^2}{3}+1-t^2 \right ) (BDT.Cauchy)\\ =\frac{\sqrt3}{2} \cdot \left ( 1-\frac{2t^2}{3} \right ) = \frac{-t^2}{\sqrt3}+\frac{\sqrt{3}}{2}+t \\ = - \frac{1}{\sqrt3} \left ( t-\frac{\sqrt3}{2} \right )^2 +\frac{3\sqrt3}{4} \leq \frac{3\sqrt3}{4} [/TEX]
Dấu bằng xảy ra: [TEX]t=\frac{\sqrt3}{2}[/TEX]